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ABSTRACT 
In this paper, a mathematical model representing the bending stiffness of a bimaterial beam is proposed. The 

classical laminated plate theory specialized to 1D is used for modeling the stiffness bending of a beam. Different 

material configurations (metal-polymer, metal-composite material and metal-metal) with three different ratios of 

layer thickness were evaluated by the analytical model were proposed. Virtual experiments by finite element 

analysis were carried out to verify the accuracy of the proposed approach. Finite element models of each 

arrangement were built and the recommendations for the ASTM three-point bending test were followed in the 

numerical simulation. The average difference of the stiffness results calculated by the analytical model and by 

finite element simulation was less than 2.11%.  
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I. INTRODUCTION 

During the last decades, engineers have tried 

to optimize their product design by integrating 

increasing numbers of functions in the properties of 

a material. This tendency has enabled complex 

assemblies to be replaced by simpler structures, 

involving the design of new materials when none of 

the classical monolithic materials embodies all the 

required functions. Thus, in the domain of most 

applications, various types of multi-materials have 

been proposed. 

A multi-material or an assembly system of 

materials can be defined as a combination of two or 

more materials in a predetermined geometry and 

scale [1, 2]. To define a multi-material answering a 

set of requirements, the designer is confronted with 

an infinity of potential solutions among which he 

has to make as objective as possible choices.  

The composite laminate materials are an 

alternative design solution in terms of specific 

strength and stiffness and they offer significant 

freedom to the designer by allowing, the strength 

and stiffness optimization of a component or 

structure for a particular application [3]. 

Designing a multi-material involves the 

determination of all the characteristic parameters. 

The most used method begins by complete 

description of the set of requirements, the selection 

of the geometry of the assembly, the load type and  

the materials selection to the choice of the multi-

materials components in order to allow a quantified 

evaluation of its performance [4-6]. 

The mechanical properties of the multi-

material are a function of the choice of materials 

that form it and its geometrical arrangement within 

the structure. For laminated materials the 

mathematical models describe their behavior [7]. 

The flexural behavior of multi-material beam has 

been studied extensively by many investigators [8-

10]. A model based on classical laminated plate 

theory reduced to one-dimension was developed to 

obtain the elastic modulus of a bimaterial [11]. 

The aim of this study is to obtain a simple 

mathematical model that describes the behavior of a 

multi-material beam subjected to a three-point 

bending. The interest is to determine the bending 

stiffness of the beam formed by two different 

materials. In this work, a one-dimensional (1D) 

bending model of a bimaterial structure is developed 

in a convenient way to obtain the bending stiffness 

of the bimaterial. The model is validated with a 

virtual experimental analysis by finite element 

analysis where the recommendations of the ASTM 

for three-point bending tests were followed. 
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II. LAMINATE ANALYSIS  

A perfectly bonded bimaterial subject to a 

moment is analyzed, and is based on classical 

laminated plate theory (CLPT), specialized 1D. The 

bimaterial is of length L, width b, and thicknesses h1 

and h2 for each material, see Fig. 1. The x-coordinate 

is the axial coordinate and the z-coordinate is the 

through-thickness coordinate, with z = 0 at the mid-

plane ((h1 + h2)/2). A concentrated load P is applied 

at mid span. In this manner, the bimaterial system 

may be modeled using the first-order laminated 

theory [12], here specialized to 1D. Within the 

linear elastic region, the stresses () are proportional 

to strains (), 

    x i xi E x    (1) 

Here, subscripts i = 1, 2 correspond to each 

material, and E is the elastic modulus for isotropic 

materials, or the effective modulus for composite 

materials.  

 
Figure 1. Schematic representation of a bimaterial 

system 

According to the Kirchhoff hypothesis [12, 13] (see 

Fig. 2), the axial displacement u of a point at (x, z) 

may be calculated using the mid-plane axial 

displacement u
0
 and the rotation of the cross section 

, this is: 

  (2) 

where  0 , 0u u x z  , and  is the rotation of a 

cross section at x, originally plane and perpendicular 

to the specimen axis.  

The corresponding variation of strain through the 

thickness is given by: 

 0

x xz      (3) 

 

 
Figure 2. Deformed geometry of the section of a 

beam in the theory of laminated. 

where  is the mid-plane strain, and  is the mid-

plane curvature given by:  

 
x

d

dx


    (4) 

In general, the force and moment resultants, 

Nx and Mx, are defined as [14], 
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Substitution of Equation 1 and 3 into 

Equation 5 yields, after integration and 

simplification 

 0

x xN A B     (6a) 

 0

x xM B D     (6b) 

where A, B, and D are, respectively, the 1D 

extensional, coupling and bending stiffness, given 

by: 

 
1 1 2 2A E h E h    (7a) 

  1 2 2 2

1

2
B h h E E    (7b) 

    3 2 3 2

1 1 1 2 2 2 1 2

1
[ 3 3 ]

12
D E h h h E h h h      (7c) 

It is assumed that both materials have a 

moderate inter-laminar shear modulus and a large 

(>10) length-to-thickness ratio. Thus, shear 

deformation is expected to be minor and can be 

neglected. 
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For the case of bending loading examined 

herein, the only applied load is the concentrated load 

P at mid span. The moment associated with the 

simply supported beam with a concentrated load is 

given as: 

 

 

,  0
2 2

,  
2 2

x

P L
x x

b
M

P L
L x x L

b


 

 
   


  (8) 

thus, Equation 6a with  yield 

 
0

x x

B

A
     (9a) 

Substituting Equation 9a into Equation 6b 

yields the mid-plane curvature  

 
2
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x

M

B
D

A

 
 
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 

  (9b) 

Since  2 2/x w x x     , the deflection of 

the mid-plane can be found by integrating the 

Equation 9b, where the conditions boundary 

/ 0w x    (slope of the bending) at / 2x L  and 

0w  (deflection) at 0x   are evaluated for the 

first and second integral constants, respectively. The 

deflection equation is given by the following:  

  
3 2

24 3 4

P A x L x
w x

b AD B

  
   

  
  (10) 

The maximum deflection   is given 

in / 2x L , thus  the maximum deflection 

displacement is given by: 

 
3 3

248 48

PL A PL
m

b bAD B


 
  

 
  (11) 

where is the deflection measure at the center, P is 

the concentrated load, L is the spam between the 

supports and m is termed as the flexural rigidity (EI 

for a homogeneous beam) of the beam. The slope of 

the load-deflection curve is termed as the bending 

stiffness, that is: 

 
3

48P b
K m

L
    (12) 

Note that if 
1 2E E , the maximum defection 

equation  3 3/ 4PL Ebh   of a simply supported 

beam with rectangular cross section subjected to 

concentrated load P in mid-span is recovered. 

III. ANALYSIS OF BENDING STIFFNESS 

In order to ascertain the accuracy of the 

obtained analytical expression of bending stiffness 

for the bi-material beam, a virtual experimental 

analysis by finite element analysis was carried out. 

The tests were performed using the commercial 

FEM software ANSYS Mechanical APDL v14.5. In 

this analysis, the recommendations of the ASTM for 

three-point bending tests [14] to characterize the 

stiffness of the beam were followed. The principal 

scheme of three-point bending test is described in 

Fig. 1. 

As previously discussed in section 2, the 

bending stiffness can be determined in terms of the 

Young's modulus of the materials, the layers 

thickness, the span between supports and the width 

of the beam. In order to validate the Equation (12), 

nine different models with dimensions of 64 x 4 x 4 

mm were proposed. The total thickness h of the 

beam was maintained constant and three different 

thickness ratios of the layers (h1/h2) were used: 3, 1, 

and 1/3. Four materials were used for the layers. The 

arrangements of the layers for the system were: 

metal-polymer, metal-composite material and metal-

metal, where aluminum was used as material 2. The 

mechanical properties of the materials are presented 

in Table 1. 

Table 1. Material properties used in this study. 

Material 
Property 

E [GPa]  

Aluminum (Al) 69 0.33 

Steel (St) 200 0.3 

Polymer (PC) 2.38 0.36 

CFRP 139 0.21 

 

3.1 Finite Element Analysis 

The 3D models of the different bimaterial 

beams proposed were constructed. The models 

consist of two laminates perfectly bonded at the 
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interface. The models were discretized with 3-D 20-

node solid element for both materials. These 

elements have quadratic displacement behavior and 

they have three degrees of freedom per node, 

translated into the nodal x, y and z directions [15]. 

For each material, the nonlinear behavior was 

considered and isotropic hardening rule for multi-

point material model was used. 

To specify the three-point bending test, the 

nodes at the end left bottom of the beam were 

constrained in the z translational displacement and 

the nodes at the end right bottom of the beam were 

fully constrained. The load was applied in negative z 

direction of the beam at half the length along the 

entire width of the beam and it was applied in steps 

from zero to the von Mises stress of any of the two 

materials was equal to the ultimate stress of its 

material. 

Example of the discretized models is shown 

in Fig. 3. The model for material configurations 

CFRP-Aluminum with 1/3 thickness ratio is 

presented. The mesh was formed by 5825 nodes and 

1024 elements. Detail of the material thickness 2 

can be observed. 

 
Figure 3. FE model of three-point bending test. 

IV. RESULTS AND DISCUSSION 

The evaluation of the stiffness of the bi-

material beam was conducted. The bending stiffness 

K of the beam was calculated using the analytical 

model and was compared with the results of 

numerical simulation.  

In the finite element analysis, the transverse 

deflection uz was evaluated from the successful 

execution of the ANSYS software after conducting 

several convergence tests. From the ultimate load 

and the maximum displacement in z direction that 

each model of the beam presents, the bending 

stiffness was calculated using the equation K= P/. 

Fig. 4 presents the load-deflection curves obtained 

by simulation of the different proposed models. 

 
Figure 4. Load-deflection curves, obtained by 

simulation of three-point bending test. The slopes 

are the stiffness of different models. 

Example of the contour of displacement and 

stress obtained of the finite element analysis are 

shown in Fig. 5 and 6 respectively. In Fig. 5, the 

transverse displacement uz of the material 

configuration CFRP-Al beam with h1/h2=1 is 

depicted. The maximum displacement is observed at 

mid spam. The Von Mises stress of the same beam 

is observed in Fig. 6. 

The obtained values by the laminated plate 

theory specialized for 1D and by finite element 

simulation are listed in Table 2. The stiffness 

determined by analytical model and numerical 

simulation, are compared for each of the proposed 

models. 

In both analyses were observed, that for PC-

Al arrangement, the stiffness increased with 

decreasing of the ratio thickness. On the other hand, 

for CFRP-Al and St-Al arrangements, the stiffness 

decreased with decreasing of the ratio thickness. 

That is, the stiffness bending increases with 

increasing the thickness of the material with higher 

Young's modulus. 

Table 2 shows that the analytical results are 

close to finite element simulation results. The values 

of bending stiffness obtained by the analytical 

model are higher than the values obtained by finite 

element simulation. The differences in the stiffness 

calculated by analytical model and simulation were 

less than 3.5% and the average difference was less 

than 2.11%. The results obtained by the analytical 
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model yielded a good agreement with the finite 

element results obtained. 

The proposed analytical model equation 

illustrates the interaction between different 

variables. In this study, the combination of the 

different Young's modulus of the materials and the 

thickness ratio were observed.  Accordingly, two 

response surface graphs were generated. 

 
Figure 5. Deflection of the CFRP-Aluminum beam 

with thickness ratio 1. 

 
Figure 6. Stress presented in the CFRP-Aluminum 

beam with thickness ratio 1. 

Table 2. Bending Stiffness calculated by analytical 

model and finite element simulation 

Material 

configurations 

Ratio 

h1/h2 

K [10
3
 N/m] 

%  
Analytical Simulation 

Al-CP 3 27.1 26.2 3.27 

Al-CP 1 48.3 47.3 2.22 

Al-CP 1/3 120.8 116.6 3.48 

Al-CFRP 3 399.4 393.7 1.43 

Al-CFRP 1 367.2 361 1.67 

Al-CFRP 1/3 361.3 354.6 1.86 

Al-St 3 515.1 507.6 1.45 

Al-St 1 431.9 425.6 1.48 

Al-St 1/3 423.9 414.9 2.12 

 

The behavior of the analytical model 

obtained by the laminated plate theory specialized to 

1D as function of the Young's modulus of the 

laminated materials, is presented in Fig. 7. In this 

figure, the response surface reveals that an increase 

in Young's modulus of any layers cause an increase 

in the bending stiffness and localized the optimum 

values of each Young’s modulus for maximum 

response. The representation of the analytical model 

of the bending stiffness considering the total 

thickness of the beam and the thickness ratio of   the 

layers can be observed in Fig. 8. This figure shown 

that the total thickness variable has a greater effect 

on the response to the increasing the stiffness of 

beam to a greater extent. This fact can be explained 

by the greater amount of beam material, with the 

same ratio of thickness. 

 
Figure 7. Response surface described by the model 

analytical, which represents bending stiffness as a 

function of the Young's modulus of the laminated 

materials. 

 
Figure 8. Response surface for the bending stiffness 

as a function of the total thickness of the beam and 

the thickness ratio of the layers. 

Max. Stress 
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V. CONCLUSIONS 

A simplified analytical model to characterize 

the bending stiffness of a bimaterial beam was 

presented. Analysis based on classical laminated 

plate theory (CLPT) specialized to 1D was carried 

out to obtain the mathematical model of the 

stiffness. Models of different material 

configurations and different thickness ratio of the 

layer were proposed to calculate the bending 

stiffness. These models were analyzed using the 

mathematical model and by experiments performed 

by finite element simulation. The flexural response 

of the bimaterial beam by numerical simulation was 

studied for three-point bending configuration. The 

differences in the stiffness calculated by analytical 

model and simulation were less than 3.5% and the 

average difference was less than 2.11%. It was 

found that the analytical solution provided good 

agreement with the experimental results. This 

mathematical model can be used with different 

configurations material and layer thicknesses. The 

analysis could be readily extended to multilayers. 
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